Hadamard's inequality - Definition. Was ist Hadamard's inequality
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:     

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist Hadamard's inequality - definition


Hadamard's inequality         
THEOREM
Hadamard inequality
In mathematics, Hadamard's inequality (also known as Hadamard's theorem on determinants) is a result first published by Jacques Hadamard in 1893.Maz'ya & Shaposhnikova It is a bound on the determinant of a matrix whose entries are complex numbers in terms of the lengths of its column vectors.
Poincaré inequality         
In mathematics, the Poincaré inequality is a result in the theory of Sobolev spaces, named after the French mathematician Henri Poincaré. The inequality allows one to obtain bounds on a function using bounds on its derivatives and the geometry of its domain of definition.
Grönwall's inequality         
THEOREM THAT GIVES BOUNDS ON INTEGRALS OF FUNCTIONS
Gronwall's lemma; Grönwall's lemma; Gronwall inequality; Gronwall lemma; Grönwall inequality; Grönwall lemma; Bellman-Gronwall inequality; Bellman-gronwall inequality; Groenwall's inequality; Groenwall inequality; Groenwall lemma; Groenwall's lemma; Gronwall–Bellman inequality; Gronwall's inequality; Gronwall-Bellman inequality
In mathematics, Grönwall's inequality (also called Grönwall's lemma or the Grönwall–Bellman inequality) allows one to bound a function that is known to satisfy a certain differential or integral inequality by the solution of the corresponding differential or integral equation. There are two forms of the lemma, a differential form and an integral form.